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Abstract. We provide numerical examples of integer-valued functionals of Nelson’s stochastic
processes. More precisely, we consider stochastic motion, according to Nelson’s form of Newton’s
second law of dynamics, in a magnetic field having an axis z of cylindrical symmetry and a gradient
in the direction of this axis. We show that there are two sets of functionals of the stochastic process
having the same law as the component of quantum mechanical angular momentum along z. The
functionals of the first set involve the z coordinate of the process and correctly model the behaviour
of the ‘needle of the measuring apparatus’. The functionals of the second set involve the coordinates
in a plane orthogonal to z and strongly suggest the possibility of a stochastic model of the collapse
of the ‘system’ toward the state indicated by the ‘needle’.

1. Introduction

Of the many possible pedagogical introductions to stochastic mechanics [1], the one that best
fits with our expository strategy was given by Nelson himself in [2]. We reproduce it here with
some notational change and some minor additions.

Consider the stochastic process {q0(t), t � 0} defined by q0(t) = X0 + σW(t), where
σ > 0 is a constant, X0 ∼ N(0, α) (namely X0 is a normal random variable of mean 0 and
variance α) and {W(t), t � 0} is a standard Brownian motion (namely, a normal process with
W(0) = 0, and covariance function given by cov(W(s), W(t)) = min(s, t)).

Define, for diffusion processes q(t) with constant and assigned diffusion coefficient
σ 2 ≡ limh→0+ Et((q(t + h) − q(t))2/h), the mean forward velocity and the mean backward
velocity, respectively, by

b(t, q(t)) ≡ lim
h→0+

Et

(
q(t + h) − q(t)

h

)

b∗(t, q(t)) ≡ lim
h→0+

Et

(
q(t) − q(t − h)

h

)
.

(Here Et indicates the conditional expectation given the value of the process at time t .)
The above limits are easily shown to exist for the processq0(t): they are given, respectively,

by

b0(t, q0(t)) = 0

and

b∗
0(t, q0(t)) = σ 2q0(t)

α + σ 2t
.
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Having set, more generally, for a function F(t, q(t)),

DF(t, q(t)) = lim
h→0+

Et

(
F(t + h, q(t + h)) − F(t, q(t))

h

)

D∗F(t, q(t)) ≡ lim
h→0+

Et

(
F(t, q(t)) − F(t − h, q(t − h))

h

)

one can inquire about the mean acceleration of the process, defined by

a(t, q(t)) = D∗b(t, q(t)) + Db∗(t, q(t))
2

.

The limit defining the above quantity is easily shown to exist for the process q0(t) and to be
given explicitly by

a0(t, q0(t)) = − σ 4q0(t)

2(α + σ 2t)2
.

The process q0(t) (namely Brownian motion with initial condition N(0, α)) therefore appears
as a particular solution of the problem of finding the diffusion processes q(t) satisfying the
conditions

lim
h→0+

Et

(
(q(t + h) − q(t))2

h

)
= σ 2

D∗Dq(t) + DD∗q(t)
2

= − σ 4q(t)

2(α + σ 2t)2
.

(1)

As an exercise in the theory of diffusion processes one can pose the problem of finding all the
solutions of the problem posed by system (1). Such a problem is easily solved according to
the following three steps.

Step 1. Introduce the current velocity field v(t, x) = (b(t, x) + b∗(t, x))/2 and ask for
those solutions of (1) which have the same current velocity field

v0(t, x) = σ 2x

2(α + σ 2t)

as the process q0(t).
It is easy to show that this intermediate problem has a countable infinity qn(t), n = 0, 1, . . .

of solutions, the probability density of qn(t) being given by

ρn(t, x) = 1√
2π(α + σ 2t)

exp

(
− x2

2(α + σ 2t)

)
1

2nn!
Hn

(
x√

2(α + σ 2t)

)2

where Hn is the nth Hermite polynomial.
Step 2. Introduce the osmotic ‘velocity’ field u(t, x) = (b(t, x) − b∗(t, x))/2 and write

system (1) as a system of differential equations in u and v:

∂u(t, x)

∂t
+
∂v(t, x)

∂x
u(t, x) +

∂u(t, x)

∂x
v(t, x) +

σ 2

2

∂2v(t, x)

∂x2
= 0

∂v(t, x)

∂t
+
∂v(t, x)

∂x
v(t, x) − ∂u(t, x)

∂x
u(t, x) − σ 2

2

∂2u(t, x)

∂x2
= a(t, x)

(2)

where, in the case at hand:

a(t, x) = a0(t, x) = − σ 4x

2(α + σ 2t)2
. (3)
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As is well known [1], setting

a(t, x) = −∂V (t, x)

∂x

u(t, x) = ∂R(t, x)

∂x

v(t, x) = ∂S(t, x)

∂x

system (2) transforms into the linear equation

iσ 2 ∂ϕ

∂t
= −σ 4

2

∂2ϕ

∂x2
+ V (t, x)ϕ (4)

in the unknown function ϕ(t, x) = eR(t,x)+iS(t,x). In particular, problem (1) reduces to the
linear equation

iσ 2 ∂ϕ

∂t
= −σ 4

2

∂2ϕ

∂x2
+

σ 4x2

4(α + σ 2t)2
ϕ. (5)

The Brownian motion q0(t), as already pointed out in [2], appears, therefore, as a particular
solution of (5). Other solutions of (5) have, in fact, been found in step 1: they are given
explicitly by

ϕn(t, x) = 1

(2π(α + σ 2t))1/4

1

(2nn!)1/2
Hn

(
x√

2(α + σ 2t)

)

× exp

(
− x2

4(α + σ 2t)
+ i

(
x2

4(α + σ 2t)
− 1 + 2n

4
ln

(
α + σ 2t

α

)))
.

Step 3. The correspondence set in the previous step between solutions q(t) of (1) and
solutions ϕ(t, x) of (5) requires, in particular, that q(t) have probability density ρ(t, x) =
|ϕ(t, x)|2. Because of the linearity of equation (5) and the orthonormality and completeness
of Hermite functions, every solution of problem (1) corresponds to a normalized linear
combination of the above solutions ϕn(t, x) (with coefficients determined, for instance, by
the initial conditions v(0, x) and ρ(0, x) imposed on the current velocity field and on the
probability density field).

The paradigmatic example proposed in [2], the presentation of which has been given—and
somewhat enriched—above, helps set the stage of the problem we wish to address here.

As we have explicitly observed in our particular example, the solution of the problem of
finding the diffusion processes having an assigned diffusion coefficient and an assigned mean
acceleration, written here as a(t, x) = − 1

m

∂V (t,q(t))

∂x
, is equivalent to the solution of the problem

i(mσ 2)
∂ϕ

∂t
= − (mσ 4)

2

∂2ϕ

∂x2
+ V (t, x)ϕ.

It is, therefore, a fact that the mathematical problem of solving in L2(R) the Schrödinger
equation

ih̄
∂ϕ

∂t
= − h̄2

2m

∂2ϕ

∂x2
+ V (t, x)ϕ

is equivalent to the mathematical problem of solving, in the class of diffusion processes, the
system

lim
h→0+

Et

(
(q(t + h) − q(t))2

h

)
= h̄

m

m
D∗Dq(t) + DD∗q(t)

2
= −∂V (t, q(t))

∂x
.
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Much harder is the physical question whether quantum mechanics can be replaced by a
stochastic description in terms of stochastic processes. The paradigmatic example discussed
above helps to focus some of the issues raised by this question; for instance, one would not say
that the Brownian motion {q0(t), t � 0} is a quantum mechanical phenomenon only because
it appears as a particular solution of the linear problem (5). The main point is (even without
considering the issue of the numerical value of the diffusion coefficient) that there seems to
be, in the phenomenological context described by the Brownian motion q0(t), no useful role
for other solutions qn(t) of the same problem (5); moreover, the fact that problem (5) is linear
is of no practical relevance because there seems to be no useful application, for instance, of
the processes corresponding to linear combinations of the functions ϕn(t, x).

For the same reason, the observation made in step 1 that problem (5), under the additional
constraint v(t, x) = v0(t, x), admits a countable infinity of solutions does not mean that there
is a ‘quantized’ observable—the number of nodes in the probability density—of relevance in
the phenomenological context of Brownian motion.

The point is here that quantum mechanics is not only the (unrestrictedly linear) Schrödinger
theory of the evolution of the initial condition ϕ(t0, x) at a given initial instant t0 into ϕ(t, x)

at any instant t , but also an interpretative scheme of the meaning of ϕ(t0, x) at each fixed t0.
This interpretative scheme is by no means exhausted by the statement that |ϕ(t0, x)|2 is

the probability density of the position observable (on this statement quantum mechanics and
stochastic mechanics agree, essentially by construction of the latter).

Part of the interpretative scheme of ϕ(t0, ·) is, for instance, also the statement, that we
make here in the simplest possible context of a particle moving on the real line R, that the
random variable, call it p(ϕ(t0, ·)), defined by having characteristic function

χp(ϕ(t0,·))(τ ) =
∫ +∞

−∞
ϕ(t0, x)ϕ(t0, x + τ) dx

has some relevance in the description of the behaviour of the process having current velocity
field and probability density field at time t0 determined by ϕ(t0, ·) and that, for ‘some’ reason,
it deserves the name of ‘linear momentum’.

In much the same way, part of the interpretative scheme of ϕ(t0, ·) is also the statement,
that we make here in the simplest possible context of a particle moving on the plane R

2, that
the random variable, call it L3(ϕ(t0, ·)), defined by having the characteristic function

χL3(ϕ(t0,·))(τ ) =
∫ +∞

0
r dr

∫ 2π

0
dϑϕ(t0, x1(r, ϑ), x2(r, ϑ))ϕ(t0, x1(r, ϑ + τ), x2(r, ϑ + τ))

has some relevance in the description of the behaviour of the system described at time t0 by
ϕ(t0, ·) and that, for ‘some’ reason, it deserves the name of ‘orbital angular momentum with
respect to the origin’.

The question we raise in this paper is the following: having fixed t0, having fixed
ϕ(t0, ·), having determined, according to the usual procedure, the current velocity field v(t0, x)
and the probability density field ρ(t0, x), is there a diffusion process {q(t), t � t0} evolving
from the initial condition determined by v(t0, x) and ρ(t0, x), a suitable functional of which
has the same law as L3(ϕ(t0, ·))? Having found such a process {q(t), t � t0} and such
a functional L(q(t), t � t0) does the ‘force’ ma(t, q(t)) under which this process evolves
justify the attribution to L(q(t), t � t0), and therefore to L3(ϕ(t0, ·)), of the name ‘orbital
angular momentum with respect to the origin’? By this we mean: under classical evolution
{x(t), t � t0} under the force ma(t, x(t)), does L(x(t), t � t0) assume the value of orbital
angular momentum competing with the initial condition x(t0), ẋ(t0)?

Figure 1 shows an example of the fact that the above questions admit a positive answer;
in particular, it shows that there do exist integer-valued functionals of Nelson’s processes. It
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Figure 1. q3(t)

εt2/2
as a function of t .

refers to a numerical simulation of the stochastic process

q(t) = (q1(t), q2(t), q3(t))

corresponding, in the sense of Nelson [1–3], to a Schrödinger wavefunction evolving in a
magnetic field having a gradient in the x3 direction.

We shall give a detailed description of the model—an idealized version of a Stern–Gerlach
apparatus [4]—in section 2. Here we wish to point out that figure 1 shows that the average
acceleration ∼q3(t)/t

2 in the direction of the field gradient tends to a discrete random variable
as t increases; this fact closely parallels, in the case of orbital angular momentum considered
here, the results obtained by Faris [5] in the case of spin angular momentum. As only a
configurational observable q3(t) is involved in this phenomenon, and as the predictions of
quantum mechanics and stochastic mechanics coincide on such an observable, it will be, in
section 2, a simple exercise in quantum mechanics to prove, in our context, the generality of
the limiting behaviour shown in figure 1.

The configuration space for the process we consider is R
3, as opposed to R

3 × SU(2)
in the case of Faris [5]. The simplicity we gain in this more elementary context allows us
to explore the question whether there are, beyond q3(t)/t

2, other functionals of the processes
exhibiting the same asymptotic behaviour. Figure 2 shows that this is the case: it follows the
motion in the x1, x2 plane in terms of the time dependence of a stochastic analogue:

λ3(t) = q1(t)p2(t, q(t)) − q2(t)p1(t, q(t))

of the x3 component of classical canonical angular momentum and also shows that λ3(t) tends
to a discrete random variable. Section 3 will be devoted to a construction, in a simple context,
of the process q(t) and to the definition of the random variables pj (t, q(t)) in terms of the
current velocity field associated with q(t) and of the vector potential A(x).

In section 4 we shall comment on the line of reasoning leading to the previous observations,
in the framework of the following statement by Feynman and Hibbs: ‘Indeed all measurements
of quantum mechanical systems could be made to reduce eventually to position and time
measurements (e.g. the position of a needle on a meter or the time of flight of a particle).
Because of this possibility a theory formulated in terms of position measurements is complete
enough in principle to describe all phenomena’ [6, p 96]. We shall argue that, in modelling
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Figure 2. q1(t)p2(t, q(t)) − q2(t)p1(t, q(t)) as a function of t .

the measurement of a component of orbital angular momentum, the obvious pointer variable
q3(t)/t

2 is not the only configurational observable that conforms to the above point of view; we
shall give, indeed, evidence of the fact that, thoughλ3(t)makes reference to the current velocity
field of the process, its limit as t → +∞ coincides with the limit of the purely configurational
random variable

.3(t) = 1

t

∫ t

0
q1(s) dq2(s) − q2(s) dq1(s) +

1

t

∫ t

0
(q1(s)A2(q(s)) − q2(s)A1(q(s))) ds.

This last observation supports the conjecture, advanced in [7] in an attempt at understanding
Bohr quantization in the stochastic context, that in Nelson’s stochastic mechanics one can give
a Keplerian definition of angular momentum in terms of ‘stochastic area per unit time’, with,
of course, the purely classical correction given by the field-dependent addendum.

2. The model

The quantum mechanical predictions on the result of a measurement of the observable

L3 = 1

i

(
x1

∂

∂x2
− x2

∂

∂x1

)
on a spinless particle in the state described by the wavefunction ψ0(x1, x2, x3) are summarized
by the random variable, that we shall call L3(ψ0), having characteristic function

χL3(ψ0)(τ ) ≡ E(eiτL3(ψ0)) = 〈ψ0, eiτL3ψ0〉.
If one introduces the Hamiltonian

Hω,ε = h1,2 + h3 (6)

where

h1,2 = 1
2p

2
1 + 1

2p
2
2 + 1

2ω
2(q2

1 + q2
2 )

h3 = 1
2p

2
3 − εq3(q1p2 − q2p1)
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and

pj = 1

i

∂

∂xj
j = 1, 2, 3

and sets

ψt = e−itHω,εψ0

it is elementary to check that

〈ψ0, eiτL3ψ0〉 = lim
t→∞

〈
ψt, exp

(
iτ

q3

εt2/2

)
ψt

〉
. (7)

The proof of this statement requires only the expansion

ψ0(x1, x2, x3) =
∑
n1,n2

ϕn1,n2(x1, x2)√
2π

∫ +∞

−∞
γn1,n2(p)e

ipx3 dp

of the initial conditionψ0 in terms of a complete orthonormal set {ϕn1,n2} n1=0,1,...
n2=0,1,...

of simultaneous

eigenfunctions of h1,2 and L3 satisfying

h1,2ϕn1,n2 = (n1 + n2 + 1)ωϕn1,n2

L3ϕn1,n2 = (n1 − n2)ϕn1,n2 .

The observation that, on each component of angular momentumn1−n2, the evolution according
to Hω,ε reduces to the easily solvable problem of one-dimensional motion in a constant force
field fn1,n2 = ε(n1 − n2) gives, then, the explicit expression〈
ψt, exp

(
iτ

q3

εt2/2

)
ψt

〉

=
∑
n1,n2

eiτ(n1−n2)

∫ +∞

−∞
γn1,n2(p)γn1,n2

(
p − τ

εt2/2

)
e2i( pτ

εt
− τ2

ε2 t3
) dp (8)

from which the limit relation (7) immediately follows.
It is instructive to consider the particular case of a Gaussian initial distribution

ψ0(x1, x2, x3) =
3∏

j=1

1

(2παj )1/4
exp

(
− x2

j

4αj

)
(9)

(all numerical examples in this paper will refer to this particular case; moreover, we shall set,
in what follows, m = 1, h̄ = 1). The right-hand side of (8) can be explicitly computed in this
case: 〈

ψt, exp

(
iτ

q3

εt2/2

)
ψt

〉
= χL3(ψ0)(τ ) exp

(
−τ 2

2

4α2
3 + t2

ε2α3t4

)
(10)

where

χL3(ψ0)(τ ) = 1√
1 + (α1−α2)2

4α1α2 sin2 τ

.

Namely, for each finite t , the distribution of the pointer variable q3

εt2/2 in the state ψt coincides
with the distribution of a random variable ξ3(t) that can be written as L3(ψ0) plus an
independent normal random variable of mean 0 and variance:

4α2
3 + t2

ε2α3t4
= 1

(εt2/2)2
((4q3)

2 + t2(4p3)
2).

Here 4q3 and 4p3 are, respectively, the standard deviations of q3 and p3 in the state ψ0. This
situation is depicted in figure 3.
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Figure 3. The dots represent the probability mass function of L3(ψ0); the continuous graph is the
probability density function of ξ3 at time t = 4. (The values of the parameters are the same as in
figures 1, 2 and are summarized in table 1.)

Table 1.

ω = 2π ε = 1 α1 = 4 α2 = 64 α3 = 1

3. The stochastic process

The considerations of the previous section strictly parallel Feynman’s time-of-flight analysis of
linear momentum [6], that in the present notational set-up can be summarized by the following
relation between characteristic functions:

〈ψ0, eiτpj ψ0〉 = lim
t→∞

〈
e−iτH0,0ψ0, exp

(
iτ
qj

t

)
e−iτH0,0ψ0

〉
(11)

H0,0 being the free Hamiltonian.
As is well known, the simple statement (11) has evolved, after the germinal work of

Shucker [8], who translated it in terms of the pathwise asymptotics of Nelson’s processes
associated with the free Schrödinger evolution, into a powerful stochastic model of quantum
scattering by a scalar potential [9,10]. In the same spirit, by studying, in this section, Nelson’s
process associated with ψt = e−itHω,εψ0 (for the simple choice (9) of ψ0 dictated by criteria
of feasibility of numerical simulations) we intend to contribute to a preliminary, heuristic
understanding of some aspects of stochastic motion in a vector potential.

For an analysis of unsurpassed clarity of the Hamiltonian approach to stochastic mechanics
needed in the case, considered here, of velocity-dependent forces, we refer the reader to [11].
Here we just recall the basic facts we need in order to draw figure 1, namely in order to define
and simulate the stochastic process

q(t) = (q1(t), q2(t), q3(t))

corresponding to ψt = e−itHω,εψ0, with Hω,ε given by (1) and ψ0 given by (9).
The probability density of q(0) is

ρ(0, x) = |ψ0(x)|2
where, of course, we use the notation x = (x1, x2, x3).
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The components of the mean forward velocity field are given, for j = 1, 2, 3, by

bj (t, x) = Re

(
1

ψt(x)

∂ψt(x)

∂xj

)
+ Im

(
1

ψt(x)

∂ψt(x)

∂xj

)
− Aj(x).

The vector potential A(x) is given by

A1(x) = −εx2x3

A2(x) = εx1x3

A3(x) = 0.

The system of stochastic differential equations is, for j = 1, 2, 3:

dqj (t) = bj (t, q(t)) dt + dwj(t). (12)

Here dt > 0, and the independent Brownian motions wj(t) are such that

E(dwj(t)) = 0 and E(dwj(t) dwk(t)) = δj,k dt.

The construction leading to the numerical simulation of (12) and, therefore, to the sample paths
of figure 1 is completed by the following explicit expression for the solution, under the initial
condition (9), of the Schrödinger equation i dψt/dt = Hω,εψt :

ψt(x) =
+∞∑

n=−∞
c(t, x3; 2εn,

√
α3)Kn(t, x1, x2).

Here

c(t, z; f, σ ) = 1

(2π)1/4
√
σ + it/(2σ)

exp

(
− (z − f t2/2)2

4σ 2 + 2it
+ i(zf t − f 2t3/6)

)
and

Kn(t, x1, x2) = ina1(t)a2(t) exp(−(d1(t) + d2(t))(x
2
1 + x2

2 )/4)

×Jn(i(d1(t) − d2(t))(x
2
1 + x2

2 )/4)


 x1 + ix2√

x2
1 + x2

2




2n

.

Here Jn is a Bessel function of the first kind and, for j = 1, 2, βj = 1/(2αj ),

aj (t) = (βj/π)
1/4

(
ω

ω cos(ωt) + iβj sin(ωt)

)1/2

dj (t) = βjω
2

(ω2 cos2(ωt) + β2
j sin2(ωt))

− iω(β2
j − ω2) sin(ωt) cos(ωt)

(ω2 cos2(ωt) + β2
j sin2(ωt))

.

As h1,2 and h3 commute, the above solution can be easily found by observing that a Gaussian
initial condition in the x1, x2 plane evolves, under a harmonic potential, into a Gaussian
wavefunction; this wavefunction is, in turn, expanded as

exp(−(d1x
2
1 + d2x

2
2 )/2) = exp

(
−d1 + d2

4
r2

) +∞∑
n=−∞

ei2nϑ inJn

(
i
d1 − d2

4
r2

)

where r and ϑ are the polar coordinates in the plane x1, x2; the above expansion then reduces
the problem of motion in the x3 direction to a sequence of elementary problems in a constant
force, with a Gaussian initial condition. As figure 3 shows, for our choice of parameters only
terms with n ranging from −3 to +3 contribute significantly to the above expansion, and are,
in fact, taken into account in our numerical simulations.
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Figure 4. b3(t, q(t)) as a function of t .

Figure 4 gives a fairly intuitive stochastic mechanical description of ‘space quantization’
in the x3 direction in terms of sample paths of the stochastic process b3(t, q(t)) (mean forward
velocity in the x3 direction).

Figure 2 follows, in an analogous way, the motion in the x1, x2 plane. In order to motivate
the introduction of the quantity plotted there, we recall, first of all, an elementary fact about
the operator L3: if ψt(x) = exp(R(t, x) + iS(t, x)), with R(t, x) and S(t, x) real functions,
then

1

ψt(x)
L3ψt(x) = x1

∂S(t, x)

∂x2
− x2

∂S(t, x)

∂x1
− i

(
x1
∂R(t, x)

∂x1
− x2

∂R(t, x)

∂x2

)
.

If, therefore, at some point x, it is, for some real m,

1

ψt(x)
L3ψt(x) = m (13)

it follows that

x1
∂S(t, x)

∂x2
− x2

∂S(t, x)

∂x1
= m

and (
x1
∂R(t, x)

∂x1
− x2

∂R(t, x)

∂x2

)
= 0.

We recall thatu(t, q(t)) = gradR(t, q(t))has, in stochastic mechanics, the meaning of osmotic
‘velocity’, while v(t, q(t)) = grad S(t, q(t))−A(t, q(t)) has the meaning of current velocity.
It is therefore natural, in perfect analogy with the classical canonical formalism, to introduce the
canonical momentum random variables p(t, q(t)) = v(t, q(t)) +A(t, q(t)) = grad S(t, q(t))

and to define λ3(t, q(t)) ≡ q1(t)p2(t, q(t)) − q2(t)p1(t, q(t)) as the stochastic analogue of
canonical angular momentum (Busch constant of motion for a classical system moving in a
magnetic field with rotational symmetry around the x3 axis).

As t increases, the components of ψt belonging to different eigenvalues m of L3 become
sharply separated along the x3 direction; this fact has the consequence (because, for large t ,
(13) is, to a high degree of approximation, locally satisfied) that the contribution of osmotic
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Figure 5. q1(t)u2(t, q(t)) − q2(t)u1(t, q(t)) as a function of t .

Figure 6. q1(t)(b2(t, q(t)) + A2(q(t))) − q2(t)(b1(t, q(t)) + A1(q(t))) as a function of t .

velocity to angular momentum becomes negligible, while the contribution of current velocity
tends to a discrete random variable: this is precisely what is shown by the sample paths of
λ3(t, q(t)) plotted in figure 2. Figure 5 follows, for completeness, the moment, with respect
to the x3 axis, of osmotic ‘velocity’.

As the contribution of osmotic velocity is vanishingly small for large t , it is no surprise
that, as figure 6 shows, the only contribution to stochastic canonical angular momentum comes,
asymptotically, from the mean forward velocity.
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4. Discussion

We summarize the considerations made up to this point into the statements:

L3(ψ0) = lim
t→+∞

q3(t)

εt2/2
(14)

L3(ψ0) = lim
t→+∞ q1(t)b2(t, q(t)) − q2(t)b1(t, q(t)) + εq3(t)(q1(t)

2 + q2(t)
2) (15)

where both limits are to be taken in law.
Statement (14) is just a rephrasing of Feynman’s assertion reported in the introduction:

here the coordinate q3 at a fixed, large, value of t plays the role of a ‘needle’ giving information
about the rotational state of motion in the plane x1, x2 of the ‘system’ that one would, classically,
describe by the canonical variable q1, p1, q2, p2.

Statement (15) refers to the effects of the measuring procedure on the ‘system’ itself. We
have been careful, at the end of the previous section, to stress the fact that (15), though expressed
here in the notational scheme of stochastic mechanics, is just a consequence of the fact that the
components ofψt belonging to different eigenvalues ofL3 become sharply separated along the
x3 direction. It is, nevertheless, interesting to observe that (15)—as opposed to (14)—makes
a subtle reference to values of the process q(t) at two different instants, due to the fact that

bj (t, q(t)) ≡ lim
h→0+

Et

(
qj (t + h) − qj (t)

h

)
.

The same is true, incidentally, for the statement

L3(ψ0) = lim
t→+∞

b3(t, q(t))

εt
(16)

suggested by figure 4.
It is a long-standing problem in stochastic mechanics to understand the role of the

assignment it attempts of a joint probability law to q(t) and q(t ′) for t �= t ′ in terms of
transition probabilities.

Are such transition probabilities just ‘a kind of generalized gauge variable necessary
to express the dynamical content of the theory in the simple and unifying form of stochastic
variational principles’ [12]; or do they, as relation (15) seems to suggest, play a role in modelling
the measurement process of non-configurational observables?

Here we wish to pursue this point of view a little further, adding the conjecture that figure 6
seems to support, that the convergence in (15) is almost sure. If this is case, we can write

L3(ψ0) = lim
t→+∞ q1(t)b2(t, q(t)) − q2(t)b1(t, q(t)) + εq3(t)(q1(t)

2 + q2(t)
2)

= lim
t→+∞

1

t

∫ t

0
[q1(s)b2(s, q(s)) − q2(s)b1(s, q(s))

+εq3(s)(q1(s)
2 + q2(s)

2)] ds

= lim
t→+∞

{
1

t

∫ t

0
q1(s) dq2(s) − q2(s) dq1(s)

+
1

t

∫ t

0
[εq3(s)(q1(s)

2 + q2(s)
2)] ds

}
. (17)

In writing the above relation we have taken into account the fact that

4(t) ≡ 1

t

∫ t

0
q1(s) dq2(s) − q2(s) dq1(s) − 1

t

∫ t

0
[q1(s)b2(s, q(s)) − q2(s)b1(s, q(s))] ds

= 1

t

∫ t

0
q1(s) dw2(s) − q2(s) dw1(s)
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Figure 7. The behaviour of the pointer variable q3(t)

εt2/2
as a function of t shown in (a) corresponds

to the sample path (q1(t), q2(t), q3(t)) shown in (b); the sample path shown here corresponds to
angular momentum 0.

Figure 8. The behaviour of the pointer variable q3(t)

εt2/2
as a function of t shown in (a) corresponds

to the sample path (q1(t), q2(t), q3(t)) shown in (b); the sample path shown here corresponds to
angular momentum 2.

is a random variable of mean 0 and variance

var(4(t)) = 1

t2

∫ t

0
[(q1(s)

2 + q2(s)
2)] ds.

We also point out that the harmonic term in

h1,2 = 1
2p

2
1 + 1

2p
2
2 + 1

2ω
2(q2

1 + q2
2 )

has been introduced into the model just in order to prevent spreading of the wavefunction in
the x1, x2 plane.

The intuition that (17) provides on the time progress of the process of measurement of
L3(ψ0) is shown by figures 7 and 8. We recall, for comparison, that for the analogous classical
system, canonical angular momentum is a linear combination of area per unit time spanned by
the vector (q1(t), q2(t)) and magnetic flux linked to the trajectory.

As to the ‘physical reality’ of trajectories such as those shown in figures 7 and 8,
we refer the reader to the cautionary remarks in the beautifully lucid introduction of [13].
We just wish to point out that, as is clear from the analysis of the measurement process
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Figure 9. q1(t)p2(t, q(t))−q2(t)p1(t, q(t)) as a function of t for evolution under Hω,ε +kε2 from
the initial condition given by a superposition, with equal weights, of ϕ0,0, ϕ2,0, ϕ4,0.

given by Pauli [14], the case of scattering by a scalar potential V does not exhaust the
instances in which a particle description of quantum behaviour is asymptotically appropriate;
the case of motion in a vector potential A deserves similar attention. Also in this case,
therefore, a comparison with the paths-of-physical-particles picture of stochastic mechanics is
in order.

Reference [13] makes it clear (through the sharp statement that, for those scattering
diffusions q(t) that admit a final linear momentum p+ = limt→∞ q(t)/t , any random variable
measurable with respect to the tail σ -algebra is a function of p+) that no contradiction emerges
in the case of a scalar potential.

If equalities (15)–(17) can, as equality (14), be proven to be true beyond the heuristic level
at which we have introduced them, the question arises of characterizing the random variables
which are measurable with respect to the tail σ -algebra generated by the process q(t) studied
in section 3.

Stated in physical terms this question can be reformulated as: what else, beyond a
component of angular momentum, can be ‘measured’ through the long-time behaviour of
a Nelson process in an inhomogeous magnetic field? Making the obvious answer (energy
of the motion in the x1, x2 plane, as suggested by the quantum mechanical statement
of simultaneous measurability of h1,2 and L3) precise requires further research. We are
presently studying a stochastic analogue of the classical adiabatic invariant

∮
p1 dq1 + p2 dq2,

carrying energy information in much the same way as .3(t) carries angular momentum
information. In carrying out this program it is no longer sufficient to consider the
Hamiltonian

Hω,ε = 1
2p

2
1 + 1

2p
2
2 + 1

2ω
2(q2

1 + q2
2 ) + 1

2p
2
3 − εq3(q1p2 − q2p1) (6′)

adopted up to this point. In describing the coupling of the harmonic ‘system’ q1, q2 with the
‘apparatus’ q3 through the vector potential

A1(x) = −εx2x3

A2(x) = εx1x3

A3(x) = 0
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the Hamiltonian (6′) neglects, in fact, the quadratic term

kε2 = 1
2ε

2q2
3 (q

2
1 + q2

2 )

responsible for transfer of energy between ‘system’ and ‘apparatus’.
Figure 9 gives (in a simple adiabatic approximation) a hint of the new phenomena (relevant

to the problem of understanding the meaning itself of ‘quantization’ and ‘superposition’ in a
stochastic context) that appear in stochastic evolution under Hω,ε + kε2 : the dominant new
feature is now that the motion in the x1, x2 plane visits in turn, at random times, the possible
‘quantized’ values of q1(t)p2(t, q(t)) − q2(t)p1(t, q(t)) present in the initial ‘superposition’
of states, alternating these visits with transient episodes similar to the ones characterizing the
short-time behaviour of the sample paths in figure 6.
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